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Abstract.
Background: Mild cognitive impairment (MCI), which is generally regarded as the prodromal stage of Alzheimer’s disease
(AD), is associated with morphological changes in brain structures, particularly the hippocampus. However, the indicators
for characterizing the deformation of hippocampus in conventional methods are not precise enough and ignore the evolution
information with the course of disease.
Objective: The purpose of this study was to investigate the temporal evolution pattern of MCI and predict the conversion of
MCI to AD by using the multivariate morphometry statistics (MMS) as fine features.
Methods: First, we extracted MMS features from MRI scans of 64 MCI converters (MCIc), 81 MCI patients who remained
stable (MCIs), and 90 healthy controls (HC). To make full use of the time information, the dynamic MMS (DMMS) features
were defined. Then, the areas with significant differences between pairs of the three groups were analyzed using statistical
methods and the atrophy/expansion were identified by comparing the metrics. In parallel, patch selection, sparse coding,
dictionary learning and maximum pooling were used for the dimensionality reduction and the ensemble classifier GentleBoost
was used to classify MCIc and MCIs.
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Results: The longitudinal analysis revealed that the atrophy of both MCIc and MCIs mainly distributed in dorsal CA1, then
spread to subiculum and other regions gradually, while the atrophy area of MCIc was larger and more significant. And the
introduction of longitudinal information promoted the accuracy to 91.76% for conversion prediction.
Conclusion: The dynamic information of hippocampus holds a huge potential for understanding the pathology of MCI.

Keywords: Alzheimer’s disease, classification, hippocampus, longitudinal study, mild cognitive impairment

INTRODUCTION

Mild cognitive impairment (MCI) is widely
regarded as intermediate state between normal aging
and clinically probable Alzheimer’s disease (AD) [1],
which is the most prevalent form of dementia affect-
ing the lives of 47 million people worldwide [2]. The
trial of therapeutic drugs for AD has encountered
huge obstacles, thereby shifting attention to slowing
down the conversion process from MCI to AD [3].
Actually, approximately 5 to 15% individuals with
MCI will convert to AD (MCIc) each year [4], while
the rest remain stable (MCIs) with longer follow up.
Therefore, it is urgent to clarify the pathological tem-
poral evolution pattern of these two kinds of MCI.
If it is possible to predict whether MCI will convert
to AD, then the intervention treatments based on the
temporal evolution pattern of MCI can substantially
reduce the incidence and cost of AD.

Given the constancy in repeated measurements
and the large number of available features in brain
images, T1 weighted magnetic resonance imaging
(MRI) has been widely used in longitudinal stud-
ies of MCI [5–7]. Previous studies using MRI have
utilized the cortical thickness [8], voxel-based vol-
ume [9, 10], average measurements of the regions of
interest [11, 12], or volume of separate subcortical
structures such as hippocampus and amygdala [13]
as indicators, and have made promising progress over
the past few years. However, the indicators they use
were mostly extracted from a single time point which
can only reflect the current state, and in most cases, it
was the data at baseline [14, 15], while MCI is a state
of the transition process and the evolution informa-
tion over time may be more useful than the snapshot
[16, 17]. Therefore, it is crucial for us to leverage the
evolution information, clarify the temporal evolution
pattern, and then take it into account in intervention.

Previous studies have established the role of hip-
pocampus in navigation [18], episodic memory [19],
working memory [20], and information processing
related to memory [21]. Hippocampal lesion is an
early pathological feature of AD and the basis of

cognitive decline [22], which has been studied by a
large number of researchers from different perspec-
tives. To our knowledge, most of the existing studies
focused on the overall indicators of hippocampus
as features, such as hippocampal volume [23], the
degree of atrophy based on the changes of width and
height [24], or combining them with other cortical
indicators [25]. Although these studies have made
considerable contributions, existing studies have pro-
vided evidence that there may be anatomical sub
regions in the hippocampus [26, 27], that is, differ-
ent sub regions have different inputs and outputs, and
play specific roles. In fact, the pathological changes of
hippocampus in the transformation process of MCI to
AD are microscopic, but more fine-grained research,
which makes all the difference for understanding this
complex process, is still lacking.

Collectively, the main objective of this study was to
analyze the temporal evolution pattern of hippocam-
pus in MCI in a sensitive manner and to predict the
conversion from MCI to AD with more fine-grained
features by making full use of the longitudinal mul-
tivariate morphometry statistics (MMS), to close the
above research gap.

MATERIALS AND METHODS

The overall workflow of this study is depicted in
Fig. 1, which mainly includes the following steps:
hippocampus segmentation, surface reconstruction,
surface registration, deformation calculation, dimen-
sionality reduction and classification.

Participants

The T1-weighed MRI scans of 88 MCIc, 108
MCIs, and 100 HC subjects in this study were selected
from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database (https://adni.loni.usc.edu),
which was a public-private partnership, launched in
2003 and led by Principal Investigator Michael W.
Weiner, MD. One of the goals of ADNI is to sup-
port advances in AD intervention, prevention, and

https://adni.loni.usc.edu
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Fig. 1. The overall workflow applied in this study. (a) T1 MRIs. (b) Bilateral hippocampus segmented from the T1 MRI. (c) Reconstructed
surface. (d) Surface multivariate morphometry statistics obtained from surface registration. (e) Calculation of significant areas of atro-
phy/expansion. (f) Defining dynamic features. (g) Dimension reduction including patch selection, sparse coding and dictionary learning, and
max pooling. (h) Classification.

treatment through applying new diagnostic methods
at the earliest possible stages, including try to com-
bine the serial MRI, positron emission tomography,
other biological markers, and clinical and neuropsy-
chological assessment. See https://www.adni-info.
org for up-to-date information. The detailed diagnos-
tic criteria of MCI could be found at the ADNI web-
site (https://adni.loni.usc.edu/methods/documents/).
In this study, all MCI subjects remained stable for
at least one year after the baseline (bl) scanning and
diagnosis, whose images and diagnosis at month 6
(m06) and month 12 (m12) were also available in
the database, and then fell into two groups: those
who converted to AD between month 12 and month
24 were defined as MCIc and others as MCIs. To

evaluate the influence of demographic characteristics
between pairs of the three groups, chi-square tests
were conducted for gender and two sample t-tests
were applied for age, Mini-Mental State Examina-
tion (MMSE) score, and Clinical Dementia Rating
(CDR) score. Detailed demographic information of
the subjects was shown in Table 1.

Data preprocessing

Firstly, the hippocampus was segmented using
FMRIBs Integrated Registration Toolkit (FIRST),
an integrated automatic segmentation tool upon
deformable models in FMRIB Software Library
(FSL). Secondly, a topology-preserving level set

https://www.adni-info.org
https://www.adni-info.org
https://adni.loni.usc.edu/methods/documents/
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Table 1
Demographic information of subjects at baseline

Variables MCIc MCIs HC p
MCIs MCIc MCIc

versus HC versus MCIs versus HC

Sample size 64 81 90 – – –
Age (means ± SD) 74.0 ± 7.3 74.0 ± 5.4 74.7 ± 5.8 0.381 0.958 0.51
Gender (male/female) 30/34 47/34 44/46 0.283 0.241 0.871
MMSE score (means ± SD) 26.9 ± 3.8 27.3 ± 2.5 27.6 ± 2.3 0.597 0.569 0.331
CDR score 0.5 0.5 0 – – –

p-values of sample size were calculated by chi-squared tests; p-values of age, gender, MMSE score, and CDR score were calculated by t-test.
SD, standard deviation; MCIc, mild cognitive impairment converter; MCIs, mild cognitive impairment non-converter; HC, healthy control;
MMSE, Mini-Mental State Examination; CDR, Clinical Dementia Rating.

method [28] was used to build the surface models.
Then, we constructed the triangular surface meshes
using the marching cube algorithm [29], which cre-
ates triangle models of constant density surfaces from
3D medical data, on the surface models we built. The
models and meshes were strictly checked manually
to remove the surfaces with modeling failure or regis-
tration errors, after which the number of subjects was
reduced to 235 including 64 MCIc, 81 MCIs, and 90
HC.

To obtain the more suitable surfaces for generating
conformal grids [30] and overcome the partial volume
effects [31], a surface smooth process including mesh
simplification using “progressive meshes” [32] and
meshes refinement by loop subdivision surface [33]
was applied. On each of the hippocampal surface,
we generated a conformal grid to serve as a canon-
ical space for surface registration [34, 35]. Using
surface conformal representation [30], we captured
surface geometric features for further automatic sur-
face registration. Finally, the hippocampal surfaces
were registered to a common template surface using
the surface fluid registration method [36]. After reg-
istration, we obtained the surfaces containing 15000
indexed vertices, which indicate the one-to-one corre-
spondence between the locations of subjects’ images
and template [37].

Determine the temporal evolution pattern

To determine the areas of relative atrophy and
expansion at each time point between groups, we
adopted the following novel features:

1. The RD, the radial distances of surface ver-
tices from the medial axis [38], measures the
thickness of hippocampus at each vertex to the
medial axis.

2. The TBM, tensor-based morphometry which
uses the high order spatial derivatives of the

deformation maps that register brains to com-
mon template, quantifies the tissue expansion
or atrophy along the tangential direction [39].

3. The mTBM, multivariate tensor-based surface
morphometry, a 3 × 1 vector, computed from
the Riemannian metric tensors that retain the
full information in the deformation tensor fields
[40], was often used as a supplement and
enhancement of TBM in our previous work [31,
41].

4. The MMS, the surface multivariate morphom-
etry statistics, a 4 × 1 vector composed of
RD and mTBM, containing both the radial
change information in RD and the tangential
change information in mTBM, was demon-
strated strong signal detection power in our
previous work [42, 43].

Firstly, the t-tests were used for the univariate mea-
sures (RD and TBM here) and the Hotelling’s T 2 tests
[44] were used for the multivariate measures (mTBM
and MMS here) to identify areas with significant dif-
ferences between pairs of the three groups. Here, we
performed two permutation tests: a vertex-based one
and a whole hippocampus-based one, and the former
simulated data distribution while the latter was used
for multiple comparison correction [45].

The vertex-based one was performed as follows.
At each hippocampal surface vertex in the two groups
compared, a t-value was calculated to indicate the dif-
ference between the two groups at that vertex based
on the true label. Next, the hippocampal surfaces of
the two groups were randomly assigned to two groups
for 10000 times, with the same number in each group
as those based on real labels, and the t values was
recalculated for 10000 times as the t’ values. At each
vertex, the ratio of the number of t’ values greater than
t value to the total number of permutations, 10000
here, was used as the p-value and p = 0.05 was set as
the threshold to establish the significance p-map on
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an average hippocampus (uncorrected). The whole
hippocampus-based one computed based on the p-
map. The feature of a p-map defined as the number
of p values lower than the threshold of p = 0.05, which
we regarded as the real effect in the experiment. Then
the feature of the significance p-map was compared
with the features in the random groupings. The ratio
of the similar or greater effects in the random group-
ings described the probability of the real effect we
observed occurring by accident, so it provided the
overall significance value of the p-map which is cor-
rected for the multiple comparison.

Then, since mTBM and MMS are multivariable
measures and cannot be directly compared, we only
compared the RD and TBM respectively on every
vertex when determining whether the areas with sig-
nificant differences of one group have atrophied or
expanded relative to another group as follows:

⎧⎨
⎩

1
N1

∑ N1
i=1 Mi

1 > 1
N2

∑ N2
i=1 Mi

2 & & p < 0.05 : group 1 expanded relative to group 2
1

N1

∑ N1
i=1 Mi

1 > 1
N2

∑ N2
i=1 Mi

2 & & p < 0.05 : group 1 atrophied relative to group 2
(1)

where N1 or N2 denotes the number in group 1 or
group 2, M denotes RD or TBM, and Mi

1 or Mi
2

denotes the M (RD or TBM) on this vertex of the
ith surface in group 1 or group 2.

Finally, the areas with relative atrophy or expan-
sion of MCIc and MCIs when compared with HC
respectively were regarded as the areas affected by
disease, and these affected areas at bl, m06, and
m12 were compared to determine the temporal evo-
lution patterns of MCIc and MCIs. We also compared
the areas with relative atrophy or expansion between
MCIc and MCIs at each time point to determine the
significant physiological differences between MCIc
and MCIs, and the distribution pattern of these dif-
ferences with the course of disease.

Definition of the dynamic morphometry features

In order to leverage both the radial and tangential
change information, remove the redundant informa-
tion, and avoid the over fitting problem caused by too
high feature dimension, the MMS was adopted as fine
feature to examine the hypothesis that only the change
information of hippocampus could predict whether a
given MCI patient will convert to AD.

The static features refer to the morphometric mea-
surements at each time point, which have been widely
used in prior brain science research [46, 47]. Con-
sidering that the evolution of hippocampus with the
course of disease may provide additional information,

a dynamic feature based on the similarity of mor-
phometric measurements between two time points,
including bl and m06 (D1), bl and m12 (D2), as well
as m06 and m12 (D3), were defined as Equation (2):

D = e−|Mt2−Mt1| (2)

where t1 and t2 refer the two different time points,
and Mt2 and Mt1 refer the morphometric measure-
ment, MMS here, at t1 and t2. Due to the property
of the exponential function, the difference between
the measurements was mapped between 0 and 1, thus
being used to characterize the similarity of the mea-
surements between the two time points.

To bring out the most informative feature set, in
addition to the single static or dynamic feature set, we
also tried to combine three dynamic feature sets (CD),

three static feature sets (CS), and all the six feature
sets (CA) into one feature set respectively. Specifi-
cally, if the feature of one subject in a certain feature
set is m-dimensional, then the feature set of k sub-
jects is a k×m matrix. And if the feature dimension
of a subject in another feature set is n, then combin-
ing these two feature sets is to join the k×m and k×n
matrices into a k×(m + n) matrix, each row of which
contains the morphological information of a subject
in both the above two feature sets.

Dimension reduction of features

Since each surface have 15000 vertices with 4
value, the feature dimension of each hippocampal sur-
face is 60000, which makes it necessary to consider
how to avoid the curse of dimensionality [48]. Dimen-
sionality reduction applied in this study included the
following steps: patch selection, sparse coding and
dictionary learning, and max-pooling.

Considering the statistical power of a single ver-
tex is limited, and the internal relationships between
vertices may contain more useful information, a
patch-based method [31, 41] was used for the prelim-
inary dimensionality reduction and maintaining the
spatial structure of the hippocampus. In brief, 1008
square windows were randomly generated on the sur-
face containing the same number of vertices, with
varying degrees of overlap between these windows,
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to ensure that every vertex would be used in the subse-
quent learning process, where the number of patches
(1008) was determined following our previous study
[43, 49]. Taking five vertices as stride, we tried all
the vertex patches of different sizes from 5 × 5 to
35 × 35 and recorded the accuracy of each patch size.
The accuracy initially increased with the patch size.
When the patch size increased to a certain value (var-
ied due to the feature set, but all less than 35 × 35),
the accuracy did not increase, but fluctuate slightly.
Considering the calculation cost, the patch size cor-
responding to the highest accuracy between the patch
size of initial fluctuation and 35 × 35 was considered
as the optimal patch size.

Then, the Stochastic Coordinate Coding [50] was
adopted to establish an over-complete dictionary, and
each column of which is a basis vector, i.e., the atom
of the dictionary. By minimizing the cost function,
the sparse representations of patches were obtained
[51–53] for further dimensionality reduction.

Finally, considering that the features we adopted
represent the local morphometry changes of the sur-
face, the max-pooling [54], which could preserve the
texture feature as much as possible, was used to select
features with most powerful classification recogni-
tion. We followed the conclusion of our previous
research on the optimal stride of the max pooling
operation and set the stride to 2 vertices, which can
make sure the feature dimension could be processed
by the classifier we choose, but also avoid missing
important morphological features due to too sparse
features. The max-pooling algorithm picked the high-
est measured vertex from 2 × 2 vertices, so that the
dimension was reduced to one quarter.

Classification of MCIc and MCIs

Compared with single classifier, ensemble clas-
sifiers can achieve higher accuracy in general [55,
56]. In this study, the boosting algorithm [57, 58]
was adopted to ensemble weak classifiers due to its
excellent performance with high-dimensional fea-
tures [31]. The principle of boosting algorithm is
introduced as follows:

All samples in the training set were given the same
weight at the beginning and a weak classifier was
trained with them. Then the weight of each sample
was updated according to the error of the classifier,
so that the weight of the training sample with high
learning error rate becomes higher to get more atten-
tion from the subsequent weak classifier. This step is
repeated until the number of weak classifiers reached

the specified number, and then these weak classifiers
were integrated to obtain the final classifier.

The ensemble classifier with tree as the weak
learner was demonstrated a very stable classification
performance because it does not need to delete vari-
ables or do a lot of parameter tuning when dealing
with high-dimensional features [48]. According to
our prior comparative research on various ensemble
algorithm [31], the Gentleboost with tree as the weak
learner was chosen.

Finally, a ten-fold cross validation was performed
to evaluate the performance, including accuracy
(ACC), sensitivity (SEN), specificity (SPE), positive
predictive value (PPV), and negative predictive value
(NPV), of the classifier as follows:

The 145 subjects (including 81MCIs and 64 MCIc)
were randomly assigned into 10 groups, with 14 or 15
subjects in each group. Take turns using nine-tenths of
groups to constitute the training set and excluding one
group as the test data, and repeat this procedure for
ten times. The performance of each fold of the cross-
validation was recorded, and the average of the ten-
fold cross-validation was taken as the classification
performance of this data set.

RESULTS

The temporal evolution pattern

The areas with significant differences (SDAs)
between MCIs and HC were shown in Fig. 2, the rela-
tive atrophy or expansion areas were shown in Fig. 3,
and the global p-values of the left and right hippocam-
pus were sorted in the third and fourth columns of
Table 2 respectively. As is shown in Fig. 2, the bilat-
eral hippocampus of MCIs showed different areas
affected by disease. The SDAs of the four measure-
ments of the left hippocampus were mainly in the
dorsal side of the head part, including CA1 and a
small area of CA2-3, and extended to subiculum of
the body on the anterior side at m12, in which the
altered area of TBM gradually extended with time,
while the SDAs of RD, mTBM and MMS decreased
slightly at m06 and then increased markedly at m12.
However, the SDAs of the right hippocampus mainly
distributed in the subiculum and CA1 on the dorsal
side of the head part and then gradually spread to the
tail sections with the course of disease. In terms of
the direction of alteration, as shown in Fig. 3, both
RD and TBM in left hippocampus illustrated atrophy.
As for the right hippocampus, almost all the TBM in
SDAs showed atrophy, while RD showed negligible
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Fig. 2. P-map of bilateral hippocampus when comparing MCIs with HC at bl, m06, and m12 using TBM, RD, mTBM, and MMS respectively.
SU, subiculum.

Fig. 3. Areas with relative atrophy and expansion of the left and right hippocampus when comparing MCIs with HC at bl, m06, and m12
using TBM and RD respectively.

expansion in a very small area of anterior subiculum
and posterior CA1 at m06, and anterior subiculum at
m12 in the tail section.

The colored p-map obtained by comparing MCIs
with HC were shown in Fig. 4, the relative atrophy or
expansion areas were shown in Fig. 5, and the global
p-values of the bilateral hippocampus were listed in
the fifth and sixth columns of Table 2. The asymme-
try of changes in the left and right hippocampus due
to disease was more prominent in MCIc. As shown in
Fig. 4, the SDAs of TBM in the left hippocampus at
bl were distributed in subiculum of the tail part, the
dorsal CA1 of the body part and the posterior CA2-3

of the head part, then increased slightly at m06 and
m12. The SDAs of RD were mainly distributed in
CA1 on the dorsal side, subiculum on the ventral side
and CA2-3 near the head part, and gradually extended
to the anterior ven subiculum of the anterior middle
part. The SDAs of mTBM and MMS were almost dis-
tributed throughout the hippocampus from bl, except
a few areas of subiculum on the ventral side of the
head. Different from the left hippocampus, the SDAs
of TBM of the right hippocampus were distributed
in dorsal and anterior CA1, posterior subiculum of
the tail part, and the ventral subiculum and poste-
rior CA2-3 of the head part. As for RD and MMS,
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Table 2
The global p-values of the pairs of the three groups including MCIs and HC, MCIc and MCIs, and MCIc and HC

MCIs versus HC MCIc versus HC MCIc versus MCIs
L R L R L R

bl TBM 0.2031 0.7247 <0.0001 0.0007 0.0012 <0.0001
RD 0.0264 0.3652 <0.0001 <0.0001 0.001 0.0001
mTBM 0.0407 0.799 <0.0001 0.0105 0.0076 0.0149
MMS 0.037 0.7194 <0.0001 0.0027 0.0037 0.0088

m06 TBM 0.1075 0.0478 <0.0001 0.0002 <0.0001 0.0003
RD 0.0522 0.1982 <0.0001 0.0005 <0.0001 <0.0001
mTBM 0.0651 0.1847 <0.0001 0.0175 0.0026 0.0029
MMS 0.0971 0.2168 <0.0001 0.0031 0.0003 0.0016

m12 TBM 0.0452 0.0391 <0.0001 0.0002 0.0002 0.0002
RD 0.0165 0.0432 <0.0001 <0.0001 <0.0001 <0.0001
mTBM 0.034 0.0858 <0.0001 0.0016 <0.0001 0.0007
MMS 0.0272 0.0592 <0.0001 <0.0001 <0.0001 0.0002

L, left hippocampus; R, right hippocampus; TBM, tensor-based morphometry; RD, radial distance; mTBM, multi-
variate tensor-based surface morphometry; MMS, the surface multivariate morphometry statistics; p-value in bold,
the global significance less than 0.05.

Fig. 4. P-map of bilateral hippocampus when comparing MCIc with HC at bl, m06, and m12 using TBM, RD, mTBM, and MMS respectively.

SDAs were distributed in the dorsal and ventral sides
of the tail at bl, and expanded with the disease, so
that only anterior subiculum of the tail part was not
included at m12. The only difference between the
SDAs of mTBM and RD was the absence of the CA1
of the tail part on the dorsal side. As illustrated in
Fig. 5, almost all SDAs of the bilateral hippocam-
pus was illustrated atrophy while a tiny expansion
showed in anterior subiculum on the tail part of the
right hippocampus.

We also compared MCIc with MCIs, and the SDAs
of which were shown in Fig. 6, the relative atro-
phy or expansion areas were shown in Fig. 7, and
the global p-values of the left and right hippocam-
pus were sorted in the seventh and eighth columns of
Table 2. At bl, SDAs of TBM in the left hippocampus
were mainly concentrated at the tail part, while the
SDAs of RD also emerged in CA1 of the body, and
the SDAs of mTBM and MMS scattered on the head
part in the meantime. With the course of disease, the
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Fig. 5. Areas with atrophy and expansion of the left and right hippocampus when comparing MCIc with HC at bl, m06, and m12 using TBM
and RD respectively.

Fig. 6. P-map of bilateral hippocampus when comparing MCIc with MCIs at bl, m06, and m12 using TBM, RD, mTBM, and MMS
respectively.

SDAs of mTBM and MMS gradually extended, and
almost spread all over the left hippocampus at m12,
while the SDAs of RD and TBM spread to subicu-
lum and CA2-3 in the head section at m06, and then
decreased to the same as which at bl. As for the right
hippocampus, SDAs of TBM and RD were mainly
distributed in CA1 and subiculum on the dorsal side
of the tail and body part and subiculum on the ventral
head part, and barely changed with time. The SDAs
of mTBM and MMS gradually spread from the dor-
sal CA1 and CA2-3 and the anterior subiculum of
body part to the whole right hippocampus except a
tiny area of ventral subiculum of the head part. As

shown in Fig. 7, of all the SDAs, expansion exits
only in a inappreciable area in subiculum on anterior
head part of the left hippocampus, and subiculum of
anterior head and CA1 of posterior head of right hip-
pocampus, while atrophy occurred almost throughout
the hippocampus.

Classification performance

The average of the ten-fold classification results
including ACC, SEN, SPE, PPV, and NPV of the
most suitable patch size are listed in Table 3. Static
features extracted from MRIs at bl, m06, and m12
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Fig. 7. Areas with relative atrophy and expansion of the left and right hippocampus when comparing MCIc with MCIs at bl, m06, and m12
using TBM and RD respectively.

Table 3
The classification performance of static features, dynamic features, and combined features

ACC SEN SPE PPV NPV

Static features bl 0.8557 ± 0.07 0.7831 ± 0.16 0.9248 ± 0.07 0.8949 ± 0.10 0.8288 ± 0.15
m06 0.8376 ± 0.12 0.8227 ± 0.19 0.8357 ± 0.15 0.7961 ± 0.18 0.8638 ± 0.14
m12 0.87 ± 0.06 0.8252 ± 0.07 0.9015 ± 0.10 0.8642 ± 0.10 0.8587 ± 0.10

Dynamic features D1 0.821 ± 0.09 0.777 ± 0.16 0.8492 ± 0.11 0.8279 ± 0.10 0.8146 ± 0.15
D2 0.7881 ± 0.08 0.6842 ± 0.21 0.8303 ± 0.15 0.7899 ± 0.15 0.7871 ± 0.10
D3 0.8143 ± 0.06 0.6627 ± 0.19 0.9289 ± 0.11 0.9044 ± 0.15 0.7843 ± 0.11

Combined features CS 0.9043 ± 0.09 0.8502 ± 0.13 0.96 ± 0.08 0.9267 ± 0.16 0.8763 ± 0.11
CD 0.8352 ± 0.06 0.6994 ± 0.16 0.9322 ± 0.08 0.9115 ± 0.10 0.7925 ± 0.12
CA 0.9176 ± 0.05 0.8535 ± 0.13 0.9789 ± 0.04 0.9633 ± 0.08 0.8809 ± 0.10

ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; CS/CD/CA, features
composed of static features/dynamic features/both static and dynamic features; Values in bold, the highest value in the column.

were used for classification respectively, and the best
classification results were achieved at patch size of
35 × 35. The three feature sets were also combined
in pairs to calculate the three dynamic features, and
the best classification results of which were obtained
at patch size of 35 × 35. Considering that the informa-
tion between each feature set may be complementary,
we also tested the classification performance on the
three feature sets of CD, CS, and CA respectively. The
best performance of CD/CS was achieved at patch
size of 35 × 35/30 × 30, while the most suitable patch
size for CA is 25 × 25.

As shown in Fig. 8, the accuracy of static features
outperformed that of the dynamic features, and the
accuracy of CS was superior to that of CD. With the
combination of all the static features and dynamic
features, the accuracy increased markedly, which
indicated an effective supplementary of the proposed
dynamic features.

DISCUSSION

The findings of this study on pathology mainly
include the following four aspects. First, we have

Fig. 8. Accuracy of static features, dynamic features, and com-
bined features. Bar heights represented the mean values, with
the error bars showing the standard deviations and each sym-
bol indicating one separate accuracy value. Bl/m06/m12, features
extracted from MRI at baseline/month 6/month 12; CS/CD/CA,
features composed of static features/dynamic features/both static
and dynamic features.

uncovered the temporal evolution pattern of lesion
in MCIs and MCIc: The atrophy of both MCIc and
MCIs are mainly distributed in dorsal CA1, then
spread to subiculum and other regions gradually,
while the atrophy area of MCIc was larger and more
significant. Second, we found that compared with
MCIs, MCIc has further atrophy on both left and right
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hippocampus, and gradually spreads from the dorsal
tail part to the entire structure. Third, there was
marked asymmetry in the left and right hippocampus
of both MCIs and MCIc. Finally, the condition of
MCI patients showed a consistent aggravating trend
over time, including the increase of significant area
and level of significance. It is worth noting that
MCIs recovered slightly at m06, which suggested
the process of the hippocampal lesion is complicated
rather than a simple linear atrophy. As for the clas-
sification results, there are two main conclusions.
First, the morphological changes in hippocampus
contained sensitive and informative features for
predicting the conversion of MCI, which showed
the central role of hippocampus in the conversion
process and the effectiveness of MMS features.
Second, the markedly improved accuracy with CA
indicated an effective supplementary of the proposed
dynamic features and the importance of the temporal
evolution information for progressive disease.

In line with previous findings, we found CA1
was the earliest and most significantly atrophied area
[59–61] which progressively spread to the head part
[59, 60]. As a highly fragile region, CA1 has been
commonly regarded as the main region associated
with cognitive process including working memory,
spatial memory information processing, and deci-
sion making [62–65]. The atrophied CA1 is thought
to reflect the loss of neurons and the neurofibrillary
tangles [66–68], which may directly result in dysm-
nesia. Montero-Crespo et al. recently reported that
the neuronal density in CA1 reduced significantly in
AD cases [61]. The lesion area also involved some
portion of subiculum then spread to CA2-3 [69, 70],
which may be related to the dysfunction of memory
retrieval and verbal memory [71, 72].

MCIc was widely considered to be closer to AD
while MCIs is closer to HC. Chételat et al. reported
higher rate and accelerated speed of atrophy in CA1
of MCIc compared with MCIs [73], Bozzali et al.
found less volume and higher degree atrophy in hip-
pocampus of MCIc than MCIs using VBS method
[70], and the ROI-based approach also led to the
similar result [74], which was supported by our find-
ing of the further atrophy of MCIc in both left and
right hippocampus especially in CA1 compared with
MCIs. Combined with the aberrant morphological
changes of MCIs and MCIc, we speculated that the
specific temporal evolution pattern of hippocampus,
including atrophy degree and atrophy region, could
provide additional information to predict the conver-
sion from MCI to AD, which was confirmed by the

improved prediction performance using the combi-
nation of static and dynamic features.

More interestingly, the asymmetry between the left
and right hippocampus, which is regarded as a charac-
teristic feature of AD-related deformation, appeared
in this study. Specifically, the left hippocampus was
demonstrated more affected than the right hippocam-
pus, a phenomenon that has been reported widely in
previous studies [38, 74]. Even Csernansky et al. sug-
gested that the CA1 region of the left hippocampus
was the only predictor of conversion from MCI to AD
[75], which may partly due to that the deformation of
the right hippocampus is mainly internal [63].

Another intriguing pattern observed in this study
is the recovery at m06 in MCIs, which indicated
the resilience of hippocampus and shed a glimmer
of hope that MCI patients could return to normal
life. Actually, there is a reversion rate of 12.3% per
year from MCI to normal [76], which was more opti-
mistic reported in some studies [77, 78]. Kinsella et
al. observed the significant improvement of memory
performance in participants received memory train-
ing [79] and Clare et al reported the resilience in
people with cognitive decline [80], which struck a
blow to the therapeutic nihilism.

As shown in Fig. 8, as expected, CA had the high-
est ACC among all feature sets, which supported our
hypothesis that the dynamic features supplemented
the addition information missing from static features.
And the variance of CA (0.05) in the ten-fold cross
validation was the smallest of all feature sets. In fact,
the stability is just one of the most valued perfor-
mances in practical application scenarios. As seen in
Table 3, the highest values of all performance indi-
cators were found in the CA line, especially with a
SPE of 97.89%. While ACC is certainly an important
indicator, ACC itself is not necessarily the most con-
cerned indicator in every clinical situation [81]. The
excellent SPE and PPV presented by dynamic fea-
tures fully reflected the abundant information in the
temporal evolution pattern, which is of great value to
avoid the misdiagnosis of MCIc as much as possible.

An extensive comparison of this method with
the recent representative methods, as presented in
Table 4, demonstrated our strengths. First, our pro-
posed method achieved excellent performance on a
modest sample size. Second, features used in our
method were worthy of promotion as its outstand-
ing performance with the only use of morphological
information of hippocampus. Finally, there was no
need to average the features of the region of inter-
est in the dimensionality reduction pipeline outlined
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Comparison with recent representative methods

Ref Sample size Features Dimensionality Classifier Performance(%) Notes

(MCIs/MCIc) reduction/selection ACC SEN SPE

Moradi [82] 100/164 GM density, age, CM Regularized logistic
regression

Random forest,
TSVM

82.0 87.0 74.0 Additional 100 subjects with uMCI were
used as inputs for semi-supervised learning,
200 AD and 231 HC for feature selection.
The random forest was used for the feature
integration, while the TSVM was used for
the final classification.

Wei [12] 83/61 CT, CV, CSA, NL,
ND

Sparse linear
regression

SVM 76.4 65.6 84.3 The authors also compared the classification
performance at each point in time, and what
we show is the best one in them.

Liu [83] 117/117 GM density The addition of
custom regularization
term in the cost
function

LSVM, majority
voting strategy

79.3 87.9 75.5 The LSVM was used for the classification of
every single template based feature set, and
the majority voting strategy was used for the
final decision.

Minhas [14] 13/16 CM, the volume of
entorhinal, fusiform,
hippocampus, middle
temporal lobe, and the
ventricles

The nearest
trajectories to the
mean feature values

NPC, majority
voting strategy

89.7 87.5 92.3 The longitudinal time point readings are
used for training the classifier, while only the
bl readings were used for validation.

Tong [84] 129/171 Grading biomarker
sparse represented by
the intensities of MRI
of HC and AD

Elastic Net method Random forest 84.1 88.7 76.5 Additional 191 AD and 229 HC subjects
were used for feature extraction.

Minhas [85] 65/54 CV, CSA, CT Wrapper based
approach

SVM 84.3 70.4 92.3 The input of the classifier were trajectories
of MRI measures calculated by custom
regression model.

Gao [86] 129/168 T1 weighed MRI, age Pre-trained network Neural network
with transfer
learning model

76.0 77.0 76.0 Another 1139 HC were used to train the
pre-trained model for age prediction, which
was transferred by fine-tuned network for
conversion prediction.

Shen [87] 59/55 GM volume from
MRI, mean intensities
from PET images, age

Sparse regression
with custom l2,1-norm

LSVM 78.7 77.3 80.0 Additional 93 AD and 99 HC were used as
auxiliary data, which was jointly used with
predictor data for feature selection.

Proposed 91/64 RD and mTBM of
hippocampus

Patch selection, sparse
coding and dictionary
learning, and max
pooling

Ensemble
classifier with tree
as the weak
learner

91.8 85.4 97.9 None.

GM, grey matter; CM, cognitive measurements; TSVM, transductive support vector machine; uMCI, unknown MCI, whose diagnosis was MCI at baseline but not stable or missing at other time
points within 36 months; CT, cortical thickness; CV, cortical volume; CSA, cortical surface area; NL, nodal path length; ND, nodal degree; SVM, support vector machine; LSVM, linear support
vector machine; NPC, no parametric classification.
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here, which preserved the deformation information of
the physiological structure to the maximum extent.

Despite the promising result of this study, there
remain several limitations to be addressed for further
research. Firstly, in order to include more subjects,
the diagnosis in the ADNI database was used as the
criteria for inclusion and grouping, while the MMSE
scores of a few subjects were missing. Secondly, since
the MRI scan and diagnosis every 6 months in a con-
tinuous time were required to be all available, the
specified stable phase and conversion period were
both relatively short, so that some patients assigned
to MCIs group may convert to AD after m24, which
also has an effect on result. Finally, the age-related
change of hippocampus was not taken into account
in the comparison between MCI and HC, which may
introduce some effect to the results.
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